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Abstract

A new aerospace application of structural reliability
techniques is presented, where the applied forces depend
on many probabilistic variables. This application is the
plume impingement loading of the Space Station Free-
dom Photovoltaic Arrays. When the space shuttle
berths with Space Station Freedom it must brake and
maneuver towards the berthing point using its primary
jets. The jet exhaust, or plume, may cause high loads
on the photovoltaic arrays. The many parameters gov-
erning this problem are highly uncertain and random.
An approach, using techniques from structural reliabil-
ity, as opposed to the accepted deterministic methods,
is presented which assesses the probability of failure of
the array mast due to plume impingement loading. A
Monte Carlo simulation of the berthing approach is used
to determine the probability distribution of the loading.
A probability distribution is also determined for the
strength of the array. Structural reliability techniques
are then used to assess the array mast design. These
techniques are found to be superior to the standard
deterministic dynamic transient analysis, for this class
of problem. The results show that the probability of
failure of the current array mast design, during its
15 year life, is minute.

Introduction
There exists a class of civil structures which have a

wide variety of uncertain loadings and are difficult to
test at a system level, but must still possess a long life

-with minimal risk of failure. At the same time, these

structures must not be excessively expensive or weighty.
Because of the random character of the uncertainties in
both the loading and the capability of these structures,
a probabilistic approach to design is warranted. The
probabilistic discipline of structural reliability has been
developed in order to ensure safety and consistency in
structural designs and in the civil engineering design
codes. 12 Recently, structural reliability techniques have
also been applied to aerospace engineering components,
such as the turbopump blades of the space shuttle main
engine.s'5 Here, the random variables of concern have
focused on the constitutive relationships and properties
of the structure. In this study, a new aerospace applica-

tion of structural reliability techniques is presented,
where the applied forces as well as the structure depend
on many probabilistic variables. This application is the
plume impingement loading of the Space Station Free-
dom Photovoltaic Arrays.

When the space shuttle approaches Space Station
Freedom it must brake and maneuver to come to a com-
plete stop relative to Space Station Freedom. This is
achieved through the use of the shuttle’s primary reac-
tion control system (PRCS) jets, each of which delivers
about 800 1b of force. The plume from these jets
expands quickly in space so that a low density plume
impinges upon the photovoltaic (PV) arrays (Fig. 1).
However, since the area of the photovoltaic arrays is so
large (110 ft by 39 ft, Fig. 2), the small plume forces can
cause significant loading in the photovoltaic array. Of
particular concern is the bending moment at the base of
the mast, which can be very large because of the mast’s
long length.

Calculating the exact transient loads which result
from plume impingement forcing is quite difficult
because of the many random variables which govern the
analysis. These random variables are the shuttle posi-
tion, the shuttle orientation, the space station orienta-
tion, space station thermal deformation, photovoltaic
array mast twist, feathered angle accuracy, predicted
plume forces accuracy, the dynamics excited by a partic-
ular approach to Space Station Freedom (essentially
dynamic load factor), modeling uncertainty, and the
array mast strength uncertainty. Most of these vari-
ables define the geometric orientation of the space
shuttle with respect to Space Station Freedom and,
therefore, define the amount of plume exhaust impinging
upon the arrays.

All of these random variables are independent and it
is highly unlikely that all of their worst case values
would coincide in time. Nonetheless, a set of transient
dynamic analyses are currently performed, using forcing
functions which are selected in an attempt to bound the
worst possible applied forces. The resulting internal
loads are compared to the limit load capability of the
structure. Results from the referenced work indicates
that at the permanently manned configuration (PMC,
Fig. 1), the bending moment applied to photovoltaic



array mast exceeds the limit load by 10 percent. This
attempt to bound the worst possible loading has been
made the baseline for structural design.

This study demonstrates the use of structural
reliability techniques to compute the probability of
failure of the array masts, with loading governed by
random inputs and an uncertain structural capability.
The probability of failure during a single shuttle berth-
ing approach to PMC and during the lifetime of the
arrays will be presented. This work will be important in
deciding whether or not the worst case deterministic
transient analysis discussed above is appropriate. This
work lays the foundations for a plume impingement
analysis methodology that is probability based and one
that produces a realistic, and still reasonably conserva-
tive, loads assessment. A cost analysis based on the
probability of failure is also presented.

Although plume impingement loading is a concern
for the enmtire space station, this study focuses on the
bending moment in the PV array masts. In particular,
the arrays on the port side (Fig. 1) are emphasized
because they are the most heavily loaded. The method-
ology developed is useful for these arrays, and for all
plume impingement loads analyses and stage configura-
tions of the space station.

Theoretical Overview

Two methods of performing probability analysis are
presented. The first is conventional Monte Carlo
simulation which produces a probability distribution for
an output, based upon statistical trials of a sequence of
random vectors. This method is easily implemented,
unfortunately, it requires a large numbér of simulations
to accurately predict the output probability distribution.
The second method presented is a first-order second-
moment scheme introduced by Hasofer and Lind.® This
method uses the probability distributions of the random
variables in the limit state function to produce the
probability of failure. In addition to the probability
subjects presented, system reliability and cost analysis
are briefly discussed.

Monte Carlo Simulation

Monte Carlo simulation is based upon running many
simulations of a system with random variable inputs
and determining the distribution or probability of an
out.pui;.l In the case of building a distribution for an
output, each of the input variables is varied randomly
according to its probability distribution function and
input into the simulation. The random output is then
recorded. This process is repeated many times until a

distribution for the output can be accurately defined.
This method has grown increasingly popular in recent
years with the advances in computational speed, but the
number of simulations required to build an accurate
distribution of the output can be very large. In addi-
tion, any change to any of the input variables requires
that the entire analysis be redone. The benefit of the
method is its simplicity.

For the case of using Monte Carlo simulation to
determine the probability of an output failing, a failure
function must be defined. Consider the limit state (fail-
ure) function, g =R — S where R is the resistance
(strength) and S is the load. Then, if g <0 (S > R)
the output fails and if g > 0 (S < R) the output sur-
vives. The limit state function g has a binomial distri-
bution and the number of failures divided by the total
simulations is the probability of failure, or more gener-
ally,

Pr= [llg@lfx) ax s ([ ¥ g)/N (D

where I[g(x)] is an indicator function such that I =1
if g<Oand I=0if g >0, f(x) is the probability
density of the inputs, and N is the number of simula-
tions. As indicated above, this method is easy to imple-
ment, but the number of simulations required can be
very large. This is especially true if the probability of
failure is low, since very few of the simulations will be
failures. The approximate variance on P; in Eq. (1) is
given by

V“[Pt] = Pf,actunl(l - Pf,actual)/ N (2)

To properly define a probability of P, will take at least
four orders of magnitude more simulations than 1/P,
in order to achieve a coefficient of variation less than
1 percent. Therefore, for P, = 1073 (~87), 107 simula-
tions are needed to get the coefficient of variation of P,
to less than 1 percent. Note that Eq. (2) is not a
practical formula since Pf’ac“d is not known.

First-Order Second-Moment Methods

These methods are called first-order methods because
they use the first-order term of a Taylor’s series expan-
sion to approximate the mean and the standard devia-
tion (second moment) of the limit state function. They
differ from the Monte Carlo approaches in that each
variable within the limit state function is represented
only by its distribution, mean, and standard deviation.
The distributions of random variables are utilized to
yield the probability of failure. The Hasofer-Lind
method® gives, with respect to the limit state function,



an invariant definition of the safety index and the
probability of failure. In the Hasofer-Lind method, each
variable is transformed to a reduced coordinate with a
zero mean and unit variance. The safety index becomes
the minimum distance from the origin to the limit state
in the space of reduced coordinates. A detailed descrip-
tion of this method is beyond the scope of this paper
and is contained in several excellent references.!'®'® In
general, the solution to this problem must be found
using a computer program. In this study, the algorithm
presented by Rackwitz and Fiessler is used.”

The limitation of this method is in the use of only
the first and second moments. This method is exact if
the distribution of the limit state function is Gaussian
since a Gaussian distribution can be completely specified
by its mean and variance. If the distribution of the
limit state function is not Gaussian, then other moments
are required to completely specify the distribution. In
this case, second moment methods provide only approxi-
mations to the probability of failure.

System Reliability

Practical engineering problems almost always have
more than one failure mode. Each failure mode may be
represented by a particular limit state function and,
therefore, have a particular probability of failure, Pg.
Each of these component probabilities must be combined
to yield a system probability of failure.® For a system
which is represented as a series, failure of any compo-
nent is considered to be a failure of the entire system.
When a series system has no correlation between the
failure modes, the system probability of failure! is given
by

P,=1-J[(1-Pg,) (3)

When a series system has correlation in its modes of fail-
ure, its probability of failure is lower. Therefore, the
above equation represents an upper bound on the prob-
ability of failure and is conservative.

Cost_Analysis

Once the probability of failure is defined, cost
analysis may be performed to optimize a design. Cost
may be defined in many ways. However, the total cost,
Cp is the most logical. Total cost should encompass
initial costs, Cy, and the cost of failure, Cp. Initial costs
include design, manufacturing, and construction costs.
The cost of failure can be more difficult to define or
even nebulous if loss of life or status are considered.
However, a cost must be associated with each conse-

quence of a failure. Given C; and Cp the total cost
of a design is given by,

Cp = Cy + Pp # Cp (4)

Note that Cp is multiplied by the probability of failure
to account for the fact that Cp may never be required.

The optimum design is found by minimising Cr.
The curve of Cy will always be concave up if an in-
crease in C; causes a decrease in P Therefore a mini-
mum will exist.

Methodology

Because of the complicated laws of physics governing
jet exhaust in a vacuum, it was not practical to include
the necessary equations of the problem physics in the
limit state functions. Therefore, the conventional Monte
Carlo approach was chosen to create the applied plume
load distributions {denoted by S). Distribution func-
tions of the photovoltaic array astrength, and uncertainty
factors for plume physics and array dynamics were also
derived (denoted by R and U, respectively). This
problem has multiple failure modes and limit state
functions. To avoid repeating the large number of cal-
culations required in Monte Carlo analysis for each fail-
ure mode, the Hasofer-Lind second-moment method was
used to calculate the probability of failure from the load
and strength distributions. The form of the nonnormal-
iged limit state function used in this analysis was

g = Rmut - Uplume * Udynamic (5)

* (Snominal + sbreakout)

A description of how the mean and variance of the
variables in Eq. (5) were determined follows.

Monte Carlo Calculation of Loads Distribution

Previous loads analyses indicate that the port
inboard arrays are the ones critically loaded by plume
impingement. Therefore, this study will focus on these
two arrays: PIU (port inboard upper) and PIL (port
inboard lower) (Fig. 1). These arrays are in their
optimal feathering position, which is defined as the
location of the a« and g joints that minimize the
plume impingement loads. Figure 1 shows the arrays in
their feathered orientations.

Two different shuttle maneuvers were considered
independently: the nominal approach and the NormZ



breakout. The nominal approach is a series of different
Jjet firings as the shuttle brakes and maneuvers towards
the berthing point. Most of the firings are attitude
adjustments, but the Z-braking (not to be confused
with the NormZ breakout maneuver) and Y-burn
sideways firings are frequent and impinge greatly on the
PV arrays. Therefore, only these two firings were con-
sidered to contribute to the loading of the arrays during
a nominal approach.

The second maneuver of importance is the NormZ
breakout, which iz a long duration Norm?Z firing used to
generate an opening velocity between the shuttle and
Space Station Freedom during an abort of the approach.
This maneuver is restricted to the last 75 ft of the
approach.

Now consider the distributions of the input variables
beginning with shuttle position and orientation with
respect to Space Station Freedom. During a nominal
approach, the Z-braking jets can only be fired within
75 ft of the space station and the Y-burn has little
impact outside this distance, so the distribution of
shuttle distance away from Space Station Freedom is
assumed such that 99.9 percent of the firings take place
within 75 ft of the space station. Even though the Z-
braking jets are not supposed to be used outside 75 ft,
there is a possibility they will be fired so this 0.1 percent
chance is held open by the distribution. The shape of
the distribution is defined by the braking profile. If the
shuttle pilots braked at a constant rate then the proba-
bility of being at a certain position would grow linearly,
with more time spent nearer the space station, but
because the pilots tend to brake more towards the end,
an exponential curve was used (Fig. 3). Because of the
faster speeds at 75 ft, the shuttle is less likely to be there
than at 10 ft. The distance the shuttle is away from the
space station is one random variable input.

A NormZ breakout can only occur within the final
75 ft, but again the possibility is left open that one will
be performed outside this range. However, unlike the
nominal approach, it is also assumed that the pilots may
get into trouble outside 75 ft and hold until 75 ft in
order to perform the high authority NormZ breakout.
Therefore a spike is placed on the breakout distance
distribution (Fig. 4) such that 10 percent of the break-
outs occur at 75 ft.

As the shuttle approaches the berthing point it
should remain within a 10° half angle cone originating
from the berthing point and expanding along the line of
approach. The shuttle is uniformly likely to be any-
where within this cone, and it is assumed that there is
a 5 percent chance that the pilots will exceed the limits
of the cone and that the likelihood of being a distance
outside the cone decreases linearly to zero (Fig. 5). For

the nominal approach, one other restriction is applied:
Only the port half of the cone is used since the shuttle
will only fire towards the port side if it is on the port
side. The position of the shuttle within the cone of
operations is two random variables: Distance from the
cone centerline and the angle on the cone.

The shuttle orientation is maintained by a digital
autopilot which has +2° deadband, which means that
the shuttle can temporarily reach maximum rotations
larger than +2°. It is assumed that the distribution of
shuttle orientation about any of its three axes is normal
and that the deadband is at 20 on a normal distribu-
tion (Fig. 8). With this distribution, there is a 0.1 per-
cent chance that the shuttle will exceed +38° of rotation.
The orientation of the shuttle with respect to Space
Station Freedom is three random variables: X, Y, and
Z shuttle rotations.

The space station orientation is maintained by an
automatic control system of control moment gyros with
backup by a reaction control system. Since the control
authority of these are low, it is not clear that Space
Station Freedom can remain within its deadbands of
+1°. Therefore, the deadband is considered to be the
le position on a normal distribution (Fig. 7). This
makes the distribution of the three space station axes
identical to that of the shuttle (Fig. ). The orientation
of the space station is three random variables: X, Y,
and 7 space station rotations.

As the space station orbits the Earth it undergoes
thermal deformations as different sides are lighted.
Early indications are that the deformation may be as
large as +5° from the center to the end of the truss.
This is the maximum about each axis. The likelihood
of a particular deformation is given by a normal distri-
bution with 5° as the 3¢ deviation (Fig. 8). The ther-
mal deformation of Space Station Freedom is three ran-
dom variables: X, Y, and Z space station truss
distortions.

Also considered is the design tolerance on the array
mast tip twist. Specifications state that this may be up
to 3°. This twist is assumed to be normally distributed
about the perfect design with 3° being the 3o deviation
(Fig. 9). The mast tip twist is one random variable.

There is approximately 30 percent‘.9 uncertainty in
the current equations!® used to derive plume impinge-
ment forces. To include this uncertainty in the analysis,
another random variable representing this uncertainty is
multiplied to the dynamic results. This factor is mod-
eled as being normally distributed about 1.0 with a
standard deviation of 0.1 (Fig. 10). In this way the
plume physics is treated as one random variable.



As mentioned earlier, the PV arrays are being
feathered to minimize plume impingement loads. How-
ever, this is not dynamic feathering, so one position for
the « and A joints has been found and these angles
are held during the entire approach. There is some
uncertainty in these angles due to many factors, among
which are the possible joint locking locations, uncer-
tainty about the on-orbit position of the joints, and
dynamic twisting. Therefore, the feather angles cannot
be guaranteed to be perfect, so a distribution is
assumed. The designers suggest that the 3¢ values are
+4° for the « joint and +3° for the B joint. The
normal distributions used for the a and B joint angles
are shown in Figs. 11 to 13 about their feather positions
(shown in Fig. 1). The feather angle uncertainties are
two input random variables: a and f# rotations.

The dynamics of the arrays are the most difficult of
all the random variables to quantify. Ideally, a large
database of shuttle approach firings could be used to run
dynamic response as part of the simulation process, how-
ever, lacking a database of shuttle approaches, some
assumptions needed to be made about the firing time
histories and their associated dynamic load factors
(DLF’s). An estimate was made of what the 3¢ DLF
is for each firing. From the data, an estimate was also
made for the variance of the 3¢ firing about the expect-
ed value. The numbers are different for each of the
arrays and are shown in Figs. 14 to 18. For the nominal
approach, the dynamic response is dominated by the
Y-burns, so much so that the Y-burn is the only firing
that effects the PIU array. Because of this, on the PIU
array the DLF due to the Y-burns is shown in Fig. 14
and the DLF on the Z-braking firings is zero. On the
PIL array, much of the load is due to the forces actually
impinging upon the PIU array and dynamic coupling.
Because of this, the DLF for the Y-burn on the PIL
array (Fig. 15) is applied to the Y-burn forces on the
PIU array. The DLF due to the Z-braking firings
(Fig. 16) is applied to the Z-braking firings on the PIL
array itself. Array dynamics are two input random
variables: Y-DLF and Z-DLF.

For the NormZ breakout the DLF’s change to those
shown in Figs. 17 and 18. In this case, the bulk of
the plume impinges upon the PIL array and because of
dynamic coupling, the DLF’s are both applied to the
forces on the PIL array.

The finite element model used to generate the dy-
namic response and the DLF’s has an uncertainty asso-
ciated with it. This uncertainty is estimated to be
+20 percent. This modeled as a normally distributed
random variable with a mean of 1.0 and a standard
deviation of 0.0667 (Fig. 19).

Photovoltaic Array Strength Distrioution

The Space Station Freedom Photovoltaic Array
consists of four major elements, which are shown in
Fig. 2. The first is a center deployable truss or mast,
the primary load bearing element of the system. Next,
there is a canister where the mast is stored during
launch. It also provides a transition structure on orbit.
Third are the blankets upon which solar cells are
mounted. The final component is the blanket boxes
which protect the blankets during launch. The blanket
boxes are mounted off of the top of the mast and the
canister, and once deployed, support the tensioned
blankets. It is the tension which supplies the structural
bending stiffness to the blankets. The dynamics of this
configuration have been studied in detail 1!

The element of the photovoltaic array which is the
most critical for loads is the mast. The cause of this
criticality is the mast’s long length. Even a small load
applied onto the blankets is transferred, through the top
blanket boxes, onto the top of the mast. This small
force causes a large moment at the base of the mast.
The mast itself is a folding truss with four longerons
(Fig. 20). There are battens and other components
which hold the longerons together. Because of its
deployability, there are additional components which
make the mast a complicated structure, as is illustrated
in Fig. 21.

Despite the fact that the array mast is complex, its
primary failure mechanism is classical Euler buckling of
the longeron,12 as is shown in Fig. 22. When the entire
mast is placed into bending about its neuatral axis, the
moment forces longerons into compression and tension
(Fig. 28). When the bending isin a plane 45° from the
face of the mast, then, in each bay, two longerons are in
the neutral plane, one is in tension, and omne is in
compression. If the compression load due to bending
exceeds the Euler buckling load, P_,, that longeron will
then buckle. It is the buckling of the longerons in
compression that defines the design limit load of the
entire mast. The plane 45° from the face is weakest
plane of the mast. For bending in the plane of the face
of the mast, the mast is v2 times stronger. The reason
for this is that there are two longerons taking load in
compression while the distance from the neutral axis to
the longerons is reduced by v2.

Any longeron in compression throughout the entire
length of the mast may fail, but the applied load is
greatest at the base and decreases in each bay up the
length of the mast. The probability of failure must be
calculated for each longeron. These failure modes are
independent and so the mast may be represented as a



series system. The overall probability of failure is then
calculated using Eq. (3).

It should be noted that failure modes other than
longeron buckling exist in the photovoltaic array mast.
These failure modes were not considered at this time.
The required design information to analyze these failure
modes in detail was not available. It is known, however,
that these failure modes have higher critical loads than
the critical load for longeron buckling.

When a single longeron buckles the entire system
does not fail catastrophically. For example, it takes two
longerons to fail in any bay for catastrophic failure to
occur. When considering that the longeron strength is
a random variable, the probability of this mode of fail-
ure will be much lower than that of one longeron buck-
ling. Even though it is not a catastrophic failure, one
longeron buckling was still considered to be system fail-
ure. The reason for this definition is that if one
longeron fails the array may not be able to be re-stowed
for on-orbit replacement. This would drastically compli-
cate EVA operations, and would have mission success
and safety implications. Therefore, because this defini-
tion is conservative and consistent with the Space
Station Freedom program specifications, one longeron
buckling was defined as system failure and the mast
becomes, in effect, a series system.

The distribution of the array strength is assumed to
be log-normal, although no fabrication data is available
at this time to confirm this selection. However, this
assumption is consistent with structures whose members
are inspected.! Discarding the obviously defective
members truncates the left hand tail of the strength dis-
tribution. In the case of the photovoltaic array, the log-
normal distribution is especially appropriate because of
the extensive inspections and testing which will be per-
formed on mast components. The mean strength is as-
sumed to be the calculated buckling load multiplied by
an empirical knockdown factor. The variance was calcu-
lated by assuming that the project defined safety factors
bound the 3¢ standard deviation mast strength and
using the definitions of the log-normal probability
distribution.’® It is worth noting that the empirical
factors used in the aerospace industry to define a struc-
tural design limit load? are roughly equivalent to the
—30 strength based on a probability distribution.

Results

Load Distribution

The nominal and NormZ breakout load distributions
were computed separately based on 100,000 Monte Carlo

simulations. The resulting distributions of the weak axis
moments are shown in Figs. 24 to 27. In these figures,
the data points are the results of the simulations and the
curves are the distributions used to model the data.
These parameters of the distributions are detailed in
Table 1. The type of distribution was determined by
plotting the results on normal and log-normal distribu-
tion paper. The breakout maneuvers produced log-
normal distributions and surprisingly the right sides of
the nominal approach produced normal distributions.

The distributions chosen for the nominal approach
only match the right side of the data because of the odd
shape of the data. This odd shape is due to the fact
that at about 20 ft out, the shuttle is edge on to the
PIU array. Therefore, there are many points at which
the Y-burn loads on the array are near zero. Inside of
20 ft, the Y-burn plumes one face of the arrays and
outside of 20 ft the Y-burn plumes the other face. This
crossover effect makes it impossible to match a standard
distribution to the results. However, this should not
effect the results significantly since the right side of the
curve will dominate the probability of failure analysis
and this side of the curve matches the data well.

Strength Distribution

Three mast designs were considered, each of which
represents three discrete designs of the Space Station
Freedom Photovoltaic Array. The design limit loads
of the three masts analyzed were 8300, 30,700, and
48,500 in.-lb. The calculated means and coefficients of
variation for these three masts are shown in Table 2. A
plot of the strength distribution of the 48,500 in.-lb
mast is shown in Fig. 28. This is the current space
station photovoltaic array mast design. The PIU and
the PIL mast were given the same distribution.

Probability of Failure and System Reliability

The probability of failure of each longeron in both
the PIU and the PIL photovoltaic arrays was calculated.
For the two specific cases of the bottom longerons of the
30,700 in.-1b PIL and PIU arrays, the design points, var-
iable sensitivity, and probability of failures are shown in
Tables 3 and 4. The probability that any longeron, in
either the PIU mast or the PIL mast would fail, was cal-
culated using Eq. (3). As discussed previously, this
equation is applicable when there is no correlation in the
strength of the longerons. Since there is almost certainly
some correlation in the strength of the longeron mem-
bers, using Eq. (3) is conservative. At this time, no
correlation data is available, and so a conservative
approach is warranted.



The probability of failure of either array mast over
the entire life of Space Station Freedom was also com-
puted. It was assumed that a breakout would occur on
every approach, which is likely very conservative, but no
data exists upon which to make a better assumption.
The total number of approaches to Space Station
Freedom over its entire life will be about 120. The
lifetime probability is given by,

Pf =1- (1 - P{,event)lzo (6)

Table 5 summarizes the system probabilities of failure
calculated. The probability of failure ranges from an
almost certainty in the case of the 8300 in.-1b array to
almost gero in the case of the 48,500 in.-1b array, the
current design. The exact numerical values for Py,
given in Table 5, are not accurate when these values are
extremely small. There are two reasons for this inaccu-
racy. First, an insufficient number of Monte Carlo sim-
ulations were performed to accurately define the load
distribution in the extreme tail region (as noted by
Eq. (2)). Secondly, the Hasofer-Lind method with the
Rackwitz-Fiessler alzgorithm is not accurate in the
extreme tail regions.” In spite of this, these values are
so low, in the case of the current design, that an exact
value for P; is not relevant. As discussed in previous
sections, many uncertainties remain in these analyses.
However, where an uncertainty existed, a conservative
assumption or parameter value was used. Therefore,
photovoltaic array mast failure due to plume impinge-
ment, with the current design, is highly unlikely.

As a comparison, deterministic analyses have shown
that an array mast of 33,000 in.-lb would be required to
insure no photovoltaic array mast failures. Yet, this
work shows that the probability of failure of the
30,700 in.-lb mast is approximately 0.0012 percent. A
failure of a 33 000 in.-lb mast would require approxi-
mately a 4.20 event. Therefore, the deterministic
transient analysis, with bounding worst case force
assumptions, does not give a clear picture of the risk
involved with these particular designs.

Sensitivity Analysis

A result available from the Rackwitz and Fiessler
algorithm is the sensitivity (a) of the design point, and
hence the probability of failure, to the random variables.
A high « indicates that the variable is important to
the design point while a low a indicates that the vari-
able is not important in the probability of failure.

In this analysis there were five random variables
used in the Rackwits and Fiessler algorithm (Eq. (5)):

Nominal plume load, NormZ breakout plume load,
plume physics uncertainty, modeling uncertainty, and
PV array strength. Tables 3 and 4 show the sensitivity
of the probability of failure of the 30 700 in.-1b PIU and
PIL arrays to these random variables. As we would
expect, the array strength is always important. On the
load side, note that the PIL array is dominated by the
NormZ breakout load. On the PIU array there is no
clearly dominant variable but the nominal load is the
most important and the model uncertainty factor is the
least important. These sensitivity results suggest that
effort and money should be spent increasing the strength
or reducing the loads and not reducing the uncertainty
factors.

Cost_Analysis

The values cited here are relative and are shown
more to illustrate the techniques involved in cost analy-
sis, rather than to present precise project cost infor-
mation. Let the original initial cost be simply C,.
To increase the strength of the mast from 8300 to
30,700 in.-1b cost approximately 0.025C_. The redesign
which increased the strength of the mast to 48,500 in.-1b
cost approximately 0.02C.. These data points are
plotted in Fig. 29 (normalized by C ).

The cost of failure was also estimated. A scenario
was created which would yield a conservative cost esti-
mate for the failure involved. Because single longeron
buckling was used as the failure point, which is not a
catastrophic failure, a catastrophic scenario was not
created. The scenario developed, therefore, assumed
single longeron buckling. If this longeron buckled it
would be likely that an elbow or corner fitting would
also fail. If this occurred, array retraction might not be
possible. Since the photovoltaic arrays are to be re-
placed periodically, when their solar cells wear out, part
of the replacement process consists of retracting the old
arrays, and returning them to Earth in the space shut-
tle. There would be a cost associated with a compli-
cated array retrieval. An estimate for this cost is 2.5C ,
although this cost is not based upon C_. The probabil-
ity of failure of each array was multiplied by the cost of
failure to identify the expected cost of failure. A plot of
these values is shown in Fig. 29 (normalized by C ).
Finally, these sets of values were added together to com-
pute total normalised cost using Eq. (4), and were also
plotted in Fig. 29. Assuming that total cost minimiza-
tion is the design criteria, then based upon the approxi-
mate data used, the 30,700 in.-1b array would appear to
be the optimal design.



Suggested Developments

This study is a demonstration of structural reliability
techniques to a unique application. However, the
simplifying assumptions made prohibit the results from
being utilised as more than information. In order to
make these techniques more useful, several changes are
suggested. These include considering dynamic transient
analysis, considering variance reduction techniques,
using better algorithms, and considering other failure
modes.

In order to progress from this initial study to a more
realistic and acceptable reliability assessment, actual
dynamic analysis needs to be performed. There are two
constraints to employing Monte Carlo simulation to do
this. First, dynamic analysis requires so much computa-
tion that the resources most likely would not be avail-
able to run the required number of simulations to
properly define the load distribution. Secondly, shuttle
simulations are difficult to develop so that, at best, a
few hundred simulated approaches to Space Station
Freedom would be available.

The above limitations would place so much uncer-
tainty on the Monte Carlo simulation results that they
would not be useful. However, in recent years variance
reduction techniques have been developed to make the
Monte Carlo process converge more quickly to the true
probability of failure. One of these methods is known as
importance sampling. Importance sampling involves
modifying Eq. (1) such that g(x) is less than zero more
often than would naturally occur based on P, This is
done by sampling x more frequently near the critical
values. The probability of failure can then be written
as’

Py = [Tfg(x) Jf(x)p(x) /p(x) dx

)
o (X &)+ 0/l + N]

where p(x) is a probability density function centered

around the failure point. This method can reduce the

number of simulations required by several orders of
) . 15

magnitude over direct Monte Carlo.

As additional design information about the photo-
voltaic array becomes available, the additional higher
failure modes such as batten collapse should be consid-
ered. It is possible to represent these higher modes as a
series system, with no correlation with longeron buckling
failure modes. This would require a series of indepen-
dent analyses. Consideration of catastrophic system fail-
ure, which would be a combination of different failure
modes, would be much more complicated than consider-

ing higher buckling modes. This analysis would no
longer be a series of independent analyses.!® Both the
probability of failure and system reliability analyses
would need to be revised. Finally, as statistical informa-
tion about the mast component fabricating becomes
available, it should be included in formulating the
strength distribution of the mast.

Limitations in the Rackwitz-Fiessler algorithm have
been discussed. Any future work should utilize a first
order-second moment algorithm with improved accuracy
in the tail regions.

Conclusions

A methodology has been presented for examining
internal loads on a structure when the applied forces are
dependent on many random variables. It is applicable
when the dependence of the loading on these random
variables is not easily defined. This method places, as
is standard in structural reliability analysis, the question
of internal loads in terms of a probability of failure
rather than a limit load exceedance. This methodology
has been successfully applied to plume impingement
loading from the space shuttle jets on the Space Station
Freedom Photovoltaic Array. This method is also suit-
able to plume impingement loading on other components
of the Space Station Freedom, as well as other large
space structures subject to shuttle approaches. This
probability based approach has been shown to be viable
and could be developed as a more appropriate alterna-
tive to deterministic analysis of plume impingement.

Using the many conservative assumptions discussed
in the paper, it was shown that the probability of failure
of the Space Station Freedom Photovoltaic Array mast
in bending due to plume impingement is very low. A
large caveat must be issued. The design, operations,
and specifications of the Space Station Freedom are still
evolving. Changes in these items can have a large
impact on the validity of the previous conclusion. Two
previous array mast designs were also examined. The
original design of the array mast had a high probability
of failure, and an intermediate design had a low proba-
bility of failure.
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TABLE 1.—PARAMETERS FOR PHOTOVOLTAIC
ARRAY LOAD DISTRIBUTIONS

Distribution Type
PIU nominal Normal
PIL nominal Normal
PIU breakout Log-normal
PIL breakout Log-normal

Mean, Coefficient of
in.-1b variation,
percent
5400 61.1
3400 60.3
4041 29.8
6216 29.7

TABLE 2.—PHOTOVOLTAIC ARRAY MAST
STRENGTH PROPERTIES

Mast design Type Mean, Coefficient of
limit load, in.-1b variation,
in.-1b percent
8 300 Log-normal | 13 750 16.4
30 700 Log-normal | 50 655 16.4
48 500 Log-normal | 91 263 20.6




TABLE 3.—DETAILED PROBABILITY DATA OF BOTTOM LONGERON,
30,700 in.-Ib PIL ARRAY

Variable Mean Coefficient of Design a,
variation, point sensitivity
percent

Mast strength 50,655 16.4 31,007 0.5389
Nominal dynamic load 3,400 60.3 6,452 —.2729
Breakout dynamic load 6,218 29.7 18,492 —.7144
Plume uricertainty f{actor 1.0 10.0 1.157 ~.2869
Model uncertainty factor 1.0 6.7 1.075 —~.2058

Safety index, § = 5.455 Probability of failure, P, = 2.4600x10~ %

TABLE 4.—DETAILED PROBABILITY DATA OF BOTTOM LONGERON,
30,700 in.-Ib PIU ARRAY

Variable Mean Coefficient of Design a,
variation, point sensitivity
percent
Mast strength 50,6855 16.4 28,593 0.6295
Nominal dynamic load 5,400 61.1 16,728 -.56731
Breakout dynamic load 4,041 29.8 6,584 —.3328
Plume uncertainty factor 1.0 10.0 1.179 —.3286
Model uncertainty factor 1.0 8.7 1.087 —.2378
_ Siafety index, § = 5.461 Probability of failure, P, = 2.3743x107°%

TABLE 5.—PROBABILITY OF FAILURE SUMMARY FOR THREE
MAST CAPABILITIES

Mast design P, Py P, Py
limit load, upper array lower array either array lifetime
in.-1b
8,300 0.567 0.467 0.769 1.00
30,700 4.64x107" 2.37x1078 1.00x10™% 1.20x107°8
48,500 2.86x1071? 8.84x107 12 1.17x10” M 1.40x107°
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Figure 1.—Permanently manned configuration (PMC) of the space station with feathered photovoltaic arrays. Port alpha = —44°,

PIU beta = -22°, PIL beta = -48°,

460 _.—— Top blanket boxes
in. T
e~
| — Blanket
Extendable
mast <
(fastmast) — 129 1400
: in.
Bottom
blanket
boxes —. ~ J
-~ \—L ’

Canister — P N

7
Beta joint —
Figure 2.—Space Station Freedom photovoltaic array.
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Figure 3.—Frequency of occurrence of distance away from
the space station when the jets were fired during the
Monte Carlo simulations of the nominal approach.
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Figure 4.—Frequency of occurrence of distance away from
the space station when the jets were fired during the
Monte Carlo simulations of the breakout maneuver.
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Figure 6.—Frequency of occurrence of shuttle rotation
about X, Y, and Z axes when jets were fired In the
Monte Carlo simulations. Distribution is designed as
normal with amean = 0, o = 1.0°,
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Figure 8.—Frequency of occurrence of thermal twist
deformations about X, Y, and Z axes when jets were
fired in the Monte Carlo simulations. Distribution is
designed as normal with a mean =0, o = 1.67°.
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of the cone of approach when jets were fired in the
Monte Carlo simutations. Distribution is designed as
uniform inside of x 10° and decreasing linearty to zero
at12.2°,
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Figure 7.—Frequency of occurrence of space station rota-
tion about X, Y, and Z axes when jets were fired in the
Monte Carlo simulations. Distribution is designed as
normal with amean =0, o = 1.0°,
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Figure 10.—Distribution of the uncertainty factor on the
plume impingement force prediction used in the limit
state function. Normal distribution with mean = 1.0,
o=0.1.
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Figure 12.—Frequency of occurrence of port inboard
upper photovoltaic array beta joint angles selected when
jets were fired during the Monte Carlo simulations. Dis-
tribution is designed as normal with a mean = -22°,
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Figure 14.—Frequency of occurrence of dynamic load
factor on the port inboard upper photovoltalc array due
to Y-bum flirings during a nominal approach. Distri-
bution is designed as normal with a mean = 0.6, o = 0.05.
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Figure 11.—Frequency of occurrence of port alpha joint
angles selected when jets were fired during the Monte
Carlo simulations. Distribution is designed as normal
distribution with mean = -44°, o = 1.333°,
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Figure 13.—Frequency of occurrence of port inboard
lower photovoltaic array beta joint angles selected when
jets were fired during the Monte Carlo simulations. Dis-
tribution is designed as normal with a mean = —48°,
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Figure 15.—Frequency of occurrence of dynamic load
factor on the port inboard lower photovoltalc array due
to Z-braking firings during a nominal approach. Distri-
bution Is designed as normal with a mean = 0.1, o = 0.05.
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to Y-bum firings during a nominal approach. Distribution
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Figure 18.—Frequency of occurrence of dynamic load factor on
the port inboard lower photovoRtaic array due to a Norm Z
breakout. Distribution Is designed as normal with a
mean = 2.0, o = 0.05.
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Figure 22.—Primary fallure mode
of the deployable mast (Euler
Buckling).
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Figure 24 —Distribution of nominal approach bending moment
on the port inboard upper photovoltaic array. The data points
represent the results of the Monte Carlo simulations. The
curve Is the normal distribution used as a mode! for the data.
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represent the results of the Monte Carlo simulations. The
curve Is the normal distribution used as a model for the data.
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